

HEALTH - FROM THE GROUND UP BREAKFAST

Tuesday 7th May The Stadium

Acknowledgement of Country

Woolworths Group acknowledges the many Traditional Owners of the lands on which we operate, and pay our respects to their Elders past and present. We recognise their strengths and enduring connection to lands, waters and skies as the Custodians of the oldest continuing cultures on the planet.

Woolworths Group supports the invitation set out in the Uluru Statement from the Heart to walk together with Aboriginal and Torres Strait Islander peoples. We are committed to actively contributing to Australia's reconciliation journey through listening and learning, empowering more diverse voices, caring deeply for our communities and working together for a better tomorrow.

TODAY'S AGENDA

Greenstock Managing Director, Anna Speer - Welcome Keynote Speaker, Professor John Gilliland Breakfast Served 7:40am Q&A 8:10am Event Concludes 8:45am

"HEALTH" FROM THE GROUND UP...

A Practitioner's Perspective

JOHN GILLILAND

Professor of Practice, Queens University Belfast Chair, ARC Zero Special Advisor, AHDB & QMS Owner, Brook Hall Estate

The Need for Global Leadership

2023 – Three New Reports

Food and Agriculture

Organization of the

Jnited Nations

Roadmap

What do they tell us?

- Eliminating Zero Hunger will drive Demand for **Crop & Livestock** Products to 2050
- Livestock Products are Vital for Human Development & **Good Health**
- Mitigation measures must Reduce Emissions, **Despite rise in Demand**

Accelerated climate actions can transform agrifood systems and help achieve food security and nutrition both today and tomorrow.

gas emissions and mitigation options

from livestock agrifood systems

breaching the 1.5C

threshold: A Global

Quantified, the hidden cost of the global agrifood system

The hidden health cost is 3 times the hidden environmental cost

Quantified, the hidden cost of the global agrifood system

Trade Offs - The Regulatory Challenge?

Human Dietary Guidelines – Human Health versus Climate Health

Approaches to modelling impact of reduction in meat and dairy consumption on nutrient intakes and disease risk

March 2024

"Given the Diet of the Scottish population is so poor, particularly in some sub-groups, an "across the board" population reduction in Meat & Dairy consumption **can not** be recommended, as micronutrient intakes may be worsened among those with already low intakes."

Currently, UK Consumers are choosing Price, over the Environment

Affordability vs. Sustainability

But the Environment is an important issue for UK and Australian Consumers

Health & Environment, key reasons why consumers may reduce Meat & Dairy

52% claim to be reducing meat consumption

25%

46%

AU: Reasons for cutting

back on Meat & Dairy

65%

UK Source: AHDB Consumer Tracker | Base: Those who cut back on meat (Nov-23: 812) YGq134_W31: Why have you cut back on eating meat? – New question in February 2023 | Base: Those who cut back on Dairy (Nov-23: 812) YGq134_W31: Why have you cut back on eating Dairy? – New question in February 2023 || AU Source: Woolworths Proprietary Annual Attitudinal Survey, Nov 23

FAO 2023, Pathway to Lower Emissions

Prioritising & Giving Context to the Change required Globally

So what does this all mean to me, as a Practitioner?

The Lands at Dowth Research Farm, Ireland

Delivering Multiple Public Goods, Simultaneously, from farming livestock

GLOBAL NETWORK OF

DEVENISH

Purchased in 2013, 185ha Grasslands & Woods

Delivering Soil Improvement Fertility & Health

Measuring Carbon Sequestration, Above & Below Ground

Measuring Carbon Sequestration, Above & Below Ground

Optimising Biodiversity, Understanding Trade Offs

Managing our Landscape UNESCO World Heritage Site

Measured Multiple Benefits of switching to Multispecies Swards

Using Dowth's "Living Lab..." 32ha trial, with 5 PhD students

In ONE year:

- 65% reduction in Nitrogen
- 20% improvement in ADLWG
- 300% increase in earthworms
- 14 times faster water infiltration of soil

A 26% reduction in GHG intensity per kg of meat, without recognition of increases in soil carbon

Delivering at the Farm Level

An EIP Operational Group – Accelerating 7 N. Irish Farms towards Net Zero

and Rural Affairs

Defined Net Zero: Sum of Emissions equals Sum of Sequestration

Adjusted for any fossil fuel CO₂ emissions displaced by Renewables and for any methane emissions reduced by waste management

It is not about Zero Emissions...

Where did we start - We learnt our numbers

Baselined & Benchmarked

- GHG Emissions
- Carbon Stocks in Soil
- Carbon Stocks in Trees
- Estimated Carbon Sequestration
- Net Carbon Position
- Empowered Behavioural Change
- Delivered other Public Goods

Baselining Net Emissions for seven ARCZero farms

		TIER 2 EMISSIONS MODULE	TIER 1 SEQUESTRATION MODULE		
2021 Agrecalc Analysis	Enterprises	Gross Emissions t CO2-e/yr	Gross Sequestration t CO2-e/yr	Net Emissions t CO2-e/yr	% Reduction
lan McClelland	Dairy	1,101	309	792	28%
Hugh Harbison	Dairy	2,009	549	1,459	27%
John Egerton	Beef & Sheep	1,475	444	1,031	30%
Roger & Hilary Bell	Sheep with Beef	754	456	298	60%
Simon Best	Arable with Beef	1,799	738	1,061	41%
Patrick Casement & Trevor Butler	Beef & Sheep	492	548	-56	111%
John Gilliland	Willows with Dry Cows	151	156	-4	103%

- No two farms are the same
- Some farms will find the journey easier than others

Some farms are beyond Net Zero already

Carbon Sequestration - New Measuring Technologies

When repeated every 5 years - measures actual change, essential for TIER 3

Aerial LiDAR Survey at 40 scans per metre

Soil Samplina to one metre deep

Measuring Carbon in Trees & Hedges

Measuring Carbon in Trees & Hedges

Using Aerial LiDAR at Brook Hall

Vegetation Type	Hedge Length (km)	Above Ground Biomass (t)	C (t) Below Ground Biomass (t)		C (t)	Total C (t)
Hedge 0-4m	0.78	14.92	7.1	2.86	1.3	8.5
Hedge 4-7m	0.35	6.36	3.0	1.22	0.6	3.6
Hedge 7-10m	0.25	10.32	4.9	1.98	0.9	5.9
Hedge >10m	1.00	156.17	74.5	29.99	14.1	88.6
TOTAL HEDGES	2.38	187.77	89.5	36.05	16.94	106.49
	Canopy Area (ha)					
Single Trees	1.87	494.78	236.0	95.00	44.6	280.6
Deciduous Woodland	17	1352.74	645.1	259.73	122.1	767.2
Coniferous Woodland	0.09	6.17	2.9	1.27	0.6	3.5
Biomass	28.96	337.61	161.0	64.82	30.5	191.5
TOTAL	47.92	2,379.07	1,134.6	456.8	214.7	1,349.3

Measuring Carbon in the Soil

Stratified for different Land Uses & Land Managements at Brook Hall

Land Category		Soil pH	Av. LOI/SOM	No. of Soil Cores	No. of Samples	Av. C. 0-10cm	Ac. C. 0-30cm	Av. C/ha	Av.C/ Category
<10% Soil Org. Matter, Short Rotation Willow Coppice		рН 6.2	7.60%	55	11	4.20%	3.20%	87.1t	2,978.8t
<10% Soil Org. Matter, Permanent Grass, no slurry/FYM, only grazed		рН 6.3	9.30%	15	3	4.90%	3.10%	87.3t	122.2t
<10% Soil Org. Matter, Deciduous Woodland		рН 5.3	9.10%	15	3	5.80%	4.10%	114.7t	57.4t
10-20% Soil Org. Matter, Permanent Grass, no slurry/FYM, only grazed		рН 6.1	13.70%	30	6	5.50%	3.40%	93.7t	1,208.7t
10-20% Soil Org. Matter, Silvopasture, no slurry/FYM		рН 4.8	14.80%	25	5	5%	2.80%	81.6t	326.4t
10-20% Soil Org. Matter, Deciduous Woodland		рН 5.3	13%	25	5	6.90%	4.90%	136t	625.6t
TOTALS	57.6ha			165 Soil Cores	33 C. Samples			92.3t/ha	5,319.1t of C.

Soil Carbon at Brook Hall = 5,319 t of C, or 19,468 of CO2e

Total Carbon Stocks across 7 ARCZero farms

Total ARCZero CO2e Stocks	Enterprises	Soil Carbon	Tree Carbon	Total Carbon	% C in Soil
lan McClelland	Dairy	31,813t	1,310t	33,123t	96%
Hugh Harbison	Dairy	68,054t	1,969t	70,023t	97%
John Egerton	Beef & Sheep	31,813t	1,310t	33,123t	96%
Roger & Hilary Bell	Sheep with Beef	50,819t	668t	51,507t	98%
Simon Best	Arable with Beef	237,915t	6,493t	244,407t	97%
Patrick Casement & Trevor Butler	Beef & Sheep	54,556t	4,022t	58,578t	93%
John Gilliland	Willows with Dry Cows	19,468t	4,937t	24,405t	80%
			TOTAL	515,166t	

ARCZero's 7 farms manage 515,166t of CO2e – 97% is in SOIL, not trees

In 2027, targeting **530,000t**, but will GHG Inventory or Scope 3 recognise increase?

Accelerating towards Net Zero – How do we do it?

Understand the costs of the different Mitigation Options – MACC Curve

Cumulative kt CO, eq

Empowered, ARCZero farmers made the following changes

Focusing on the most Cost Effective Solutions first

- Improving efficiency genetics, age of slaughter, cow size, animal health
- Improving Soil pH improving nutrient uptake & growth of clover
- Increasing the use of legumes & multi species pastures
- Reducing the use of Nitrogen fertiliser
- Planting trees & Hedgerow Management
- Grazing Willows
- Installing Renewables

The Resultant Improvements Observed over two years

LCA comparison between 2021 & 2023, gross emissions/unit of output

GHG Reduction 2021 to 2023	Enterprises	2021	2023	% Reduction in GHGs
lan McClelland	Dairy	1.3kg CO2e/kg FPC Milk	1.1kg CO2e/kg FPC Milk	13%
Hugh Harbison	Dairy	1.25kg CO2e/kg FPC Milk	1.2kg CO2e/kg FPC Milk	4%
John Egerton	Beef & Sheep	32.8kg CO2e/kg dwt	25.6kg CO2e/kg dwt	22%
Roger & Hilary Bell	Lamb	22kg CO2e/kg dwt	15.7kg CO2e/kg dwt	28%
Simon Best	Wheat	0.99kg CO2e/kg grain	0.47kg CO2e/kg grain	53%

Determining Factors

- Price of fertiliser
- Sowing legumes
- Health of livestock
- Weather

Delivering Multiple Public Goods Simultaneously

Using LiDAR & Phosphate Soil Surveys to create "Run Off Risk" Maps

Comparing Different Land Uses

Delivering Multiple Public Goods Simultaneously

Role of Livestock Faeces in Increasing Soil Biodiversity

Delivering Multiple Public Goods Simultaneously

The Importance of Increasing Biodiversity Under the Soil

Three New Papers

The age of extinction More than half of Earth's species live in the soil, study finds

Soil estimated to be home to 90% of world's fungi, 85% of plants and more than 50% of bacteria, making it the world's most species-rich habitat

National Academy of Science, Aug 23

Aug 2023

Cessation of grazing causes biodiversity loss and homogenization of soil food webs

Maarten Schrama^{1,2}, Casper W. Quist^{3,4}, G. Arjen de Groot⁵, Ellen Cieraad^{1,6}, Deborah Ashworth², Ivo Laros⁵, Lars Hestbjerg Hansen^{7,8}, Jonathan Leff^{9,10}, Noah Fierer^{9,10} and Richard D. Bardgett²

Oct 2023

ИDВ

Role of Different Land Uses in Building Soil Organic Carbon

Role of Diverse Root Architecture – Monocultures' Root Structure Struggling

Mean SOC Stocks for Different Land Uses at Brook Hall

Is this Scale of Ambition Possible at a Regional Level?

N. Ireland

- £45m Scheme to base line every field, tree & hedge
- Carried out over 4 years, one Zone per year
- Online training, empowering farmers with their own Data
- Output Soil Fertility, Carbon Stocks & Run Off Risk Maps
- Opened May 2022, plan to repeat every 5 years
- 92% Farmer uptake in Zones 1 & 2 (50% of N. Ireland)

Critical Achievement in N.I The Cost of Measuring, Reporting & Verification (MRV) Is a Public Good

FAO, Achieving Zero Hunger: A Global Road Map, COP28

Achieving SDG2 without breaching the 1.5C threshold: A Global Roadmap

Accelerated climate actions can transform agrifood systems and help achieve food security and nutrition both today and tomorrow.

Activity	Target Year	Description
Liverteek	2030	Methane Emissions Reduced by 25%, compared to 2020
2050		Total Livestock Productivity Growth, 1.7% per year, Globally
Crops	2050	Total Crop Productivity Growth, 1.5% per year, Globally
Clops	2050	Total Crop Productivity Growth, 2.3% per year, Low-income Countries
Enabling Healthy Diets for All	2030	All Countries to update Food Dietary Guidelines & context on Quantity & Dietary Patterns
		All Countries have Legislation Restricting Food Advertisements targeting children
2025		Zero Global Net-Deforestation achieved
2035	2035	Zero Global Gross-Deforestation achieved
Soil 6 Water	2030	Achieve Universal & Equitable access to Safe & Affordable Drinking Water for all
Soll & Water	2040	Additional 10 Gega Tonnes of CO2e Sequestered in Crop & Pastureland Soil between 2025 & 2050
Food Loss & Wasto	2030	50% Reduction of Global Food Waste at Retail & Consumer levels
FOOD LOSS & WOSTE	2050	All Food Loss & Waste Integrated into Circular Bioeconomy, or used for Feed & Soil Enhancement

"Health" from the Ground Up

Achieving SDG2 without breaching the 1.5C threshold: A Global Roadmap

Accelerated climate actions can transform agrifood systems and help achieve food security and nutrition both today and tomorrow.

What Role does Australian Farming & Food want in delivering this 2050 Vision?

It won't happen if we don't...

- Baseline, Measure & Manage with forensic integrity
- Empower Farmers with Knowledge to Change
- Invest in Delivering Human Health & Zero Hunger

Q & A

all and a start

HEALTH - FROM THE GROUND UP

